Cold Electronics and Ionization Charge Extraction in the MicroBooNE LArTPC

New Perspectives 2018

Brian Kirby, Brookhaven National Lab

June 18, 2018

- What is the MicroBooNE LArTPC?
- What are cold electronics and why is the MicroBooNE detector using them?
- MicroBooNE's cold electronics have excellent performance
- Crash course in LArTPC signals, MicroBooNE field response data/MC
- MicroBooNE ionization charge extraction
- Summary

What is MicroBooNE?

Micro Booster Neutrino Experiment

- First large-scale US Liquid Argon
 Time Projection Chamber (LArTPC)
- LAr active target 85 tons (170 total)
- First large scale application of cold front-end electronics in LArTPCs
- Exposed to short baseline neutrino beam produced at Fermilab
- Taking neutrino data since Oct 2015!

MicroBooNE Cryostat

Physics Goals

- Investigate MiniBooNE excess
- Neutrino-Ar cross-sections
- LArTPC Detector R&D

MicroBooNE is a Single-Phase LArTPC

MicroBooNE LArTPC R&D and Signal Processing

- Multiple MicroBooNE publications focused on technical details of LArTPC performance, signal processing (focus of this talk):
- Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC
 - JINST 12 P08003
 - MicroBooNE electronic noise mitigation and performance
- <u>Ionization Electron Signal Processing in Single Phase LArTPCs I.</u>
 <u>Algorithm Description and Quantitative Evaluation with MicroBooNE Simulation</u>
 - Simulation of MicroBooNE LArTPC and evaluation of performance of novel charge extraction algorithms with simulated data
- <u>Ionization Electron Signal Processing in Single Phase LArTPCs II.</u>
 <u>Data/Simulation Comparison and Performance in MicroBooNE</u>
 - Validation of MicroBooNE simulation and evaluation of performance of novel charge extraction algorithms with MicroBooNE data

- What is the MicroBooNE LArTPC?
- What are cold electronics and why is the MicroBooNE detector using them?
- MicroBooNE's cold electronics have excellent performance
- Crash course in LArTPC signals, MicroBooNE field response data/MC
- MicroBooNE ionization charge extraction
- Summary

MicroBooNE Uses Low Noise Cold Electronics

Cold electronics simplify cryostat design and optimize LArTPC performance

MicroBooNE LArTPC and Wire Planes

MicroBooNE LArTPC with Wire Planes + **Cold Electronics Installed**

Installed MicroBooNE Wires with Wire Plane Orientation Indicated

- MicroBooNE uses three wire-planes to detect drifted ionized charge
- Two planes (U/V) sense charge by induction, directly collected by third plane (Y) 8

- What is the MicroBooNE LArTPC?
- What are cold electronics and why is the MicroBooNE detector using them?
- MicroBooNE's cold electronics have excellent performance
- Crash course in LArTPC signals, MicroBooNE field response data/MC
- MicroBooNE ionization charge extraction
- Summary

MicroBooNE Event Display Pre/Post Noise Filtering

Significant improvement after noise filtering, obtain "bubble chamber" quality interaction images

MicroBooNE Cold Electronics Noise Performance

Wire Noise Level in MicroBooNE

MicroBooNE Cold Electronics Response is Stable

- TPC channel electronic gains measured in-situ using nominal response function
 - Corrections applied to account for implementation of calibration system
 - Mean induction gain is 194.3 ± 2.8 [e /ADC], Mean collection gain is 187.6 ± 1.7 [e /ADC]
- Cold electronics gain stable over two year period,variation ~0.2%

- What is the MicroBooNE LArTPC?
- What are cold electronics and why is the MicroBooNE detector using them?
- MicroBooNE's cold electronics have excellent performance
- Crash course in LArTPC signals, MicroBooNE field response data/MC
- MicroBooNE ionization charge extraction
- Summary

Wire Response and Long-Range Induction

- Long-range induced current significantly changes induced response shape
- Can reproduce this effect in simulation, improve data/MC agreement by increasing number of simulated adjacent wires: effect is understood

- What is the MicroBooNE LArTPC?
- What are cold electronics and why is the MicroBooNE detector using them?
- MicroBooNE's cold electronics have excellent performance
- Crash course in LArTPC signals, MicroBooNE field response data/MC
- MicroBooNE ionization charge extraction
- Summary

Ionization Charge Extraction and Deconvolution

- Cold electronics and wire response is well understood, how to apply?
- Recover ionization charge by deconvoluting waveforms with known detector response

$$S(\omega) = \frac{M(\omega)}{R(\omega)} \cdot F(\omega)$$

2D-Response Accounts for Long-Range Induction

1D Response

$$M(t_0) = \int_{-\infty}^{\infty} R(t, t_0) \cdot S(t) \cdot dt$$

Wire i Observed Signal

on wire i - 1

$$M_i(t_0) = \int_{-\infty}^{\infty} (... + R_1(t_0 - t) \cdot S_{i-1}(t) + R_0(t_0 - t) \cdot S_i(t) + R_1(t_0 - t) \cdot S_{i+1}(t) + ...) \cdot dt$$
Contribution from charge Contribution from charge

- Long-range induction significantly changes response shape
- Need to generalize response to account for contributions from adjacent wires

on wire i

on wire i + 1

Extend Deconvolution Method to 2D

1D Response in Frequency Domain

$$M(\omega) = R(\omega) \cdot S(\omega)$$

2D Response in Frequency Domain

$$\begin{pmatrix} M_1(\omega) \\ M_2(\omega) \\ \vdots \\ M_{n-1}(\omega) \\ M_n(\omega) \end{pmatrix} = \begin{pmatrix} R_0(\omega) & R_1(\omega) & \dots & R_{n-2}(\omega) & R_{n-1}(\omega) \\ R_1(\omega) & R_0(\omega) & \dots & R_{n-3}(\omega) & R_{n-2}(\omega) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ R_{n-2}(\omega) & R_{n-3}(\omega) & \dots & R_0(\omega) & R_1(\omega) \\ R_{n-1}(\omega) & R_{n-2}(\omega) & \dots & R_1(\omega) & R_0(\omega) \end{pmatrix} \cdot \begin{pmatrix} S_1(\omega) \\ S_2(\omega) \\ \vdots \\ S_{n-1}(\omega) \\ S_n(\omega) \end{pmatrix}$$

$$\begin{pmatrix} S_1(\omega) \\ S_2(\omega) \\ \vdots \\ S_{n-1}(\omega) \\ S_n(\omega) \end{pmatrix}$$

- Extend the deconvolution procedure to 2D
- Big picture: 2D-deconvolution improves ionization charge extraction from induction wires by accounting for long-range induction

MicroBooNE Event Display After 2D-Deconvolution

Previously obscured features recovered by 2D-deconvolution

2D-deconvolution is enabled by superior noise performance of cold electronics

Cosmic Muon dQ/dx Measurements Improved by 2D-Deconvolution

- 2D-deconvolution improves agreement between plane dQ/dx measurements
- Puts induction and collection planes on the same footing!

Cosmic Muon Induced Charge Measurements Match Between Wire Planes

 Accurate charge matching across LArTPC wire planes has been demonstrated for the first time!

More Improved Event Displays!

Summary

- MicroBooNE has achieved excellent cold electronic noise levels
- Low noise allows novel deconvolution-based ionization charge extraction methods that correctly account for long-range induction
- Demonstrated first accurate charge matching across LArTPC wire planes
- Detailed understanding of MicroBooNE detector response is crucial for the development of physics analyses and evaluation of systematic uncertainties
- Improve the reconstruction of neutrino interactions

Backup